
Smallsample
May 2011

Minimal Kernel Modules for Linux-2.6

Alessandro Rubini (rubini@gnudd.com)

Chapter 1: Git Branches 1

Introduction

This packages is my collection of minimal examples for kernel programming, plus some user-
space utilities. I am testing it on all official kernel releases starting from 2.6.20, up to the version
number of the package you downloaded (2.6.37 as I write this).

The code is meant to run without special hardware, and I tested it both on real hardware and
qemu. No platform dependencies are there (endianness or such stuff) and the code has been
tested on a few platforms.

1 Git Branches

Since version 2.0 (now replaced by the one you are reading) this package uses git and the whole
git information is part of the distribution (subdirectory .git/). The master branch, already
checked-out in the distributed tarball is for the latest supported version, but there are branches
for older versions where code differs from the latest supported.

To understand and use information in this chapter you are expected to have git installed (package
git-core in some distributions, command /usr/bin/git), otherwise skip to the next section.

To get the list of branches in this package, use:

git branch

You should see one branch for each supported version, plus one branch for each published releae
of this package. To see the difference from one branch to the other you can use the various git
diff or git log options. For example:

git diff master for-2.6.23
git log master..for-2.6.23

In general, branches for older versions have additional commits than branches for later versions,
as I apply backwards fixes starting from the master branch. Therefore, the branch called (for
example) release-smallsample-2.6.36 includes all commits for that release, including all the
backward patches. In this case it’s two backward commits:

903a0eb... 2.6.22 (backwards): smallwork: use older cancel
f450d02... 2.6.26 (backwards): smallchar-udev: device_create fix
af2c2f0... doc: documented the 2 timing modules
7645ef4... test: added smallwork
[...]

Please note that while the master branch will always move forward, I’ll rebase the other branches
as code changes, in order to have new features or fixes available in all applicable versions – that’s
why I also have a branch for the release, it’s for any user who made own patches on an older
version in a previous release of this package, so all previous commits are still there in later
releases of the package.

I’ve made my best to have all supported versions (2.6.20 onwards) compile without errors or
warnings, and I have tested all modules on all versions. Anyways, I may have overlooked some
detail: any feedback is welcome.

Please note that some errors or warnings may depend on the configuration you are running.
For example, if your kernel source doesn’t support the frame buffer you will have some missing
symbols while compiling smallfb. This is not a problem as long as you don’t load the affected
modules.

Chapter 5: Testing 2

2 Compiling

To compile the modules, you need to point the LINUX environment variable to the top-level
directory of the kernel tree you are going to load the modules in. This is the usual requirement
for compiling modules. Note that your distribution may have a special package to help you build
modules for the kernel you are currently running, but I urge to recompile your kernel.

A simple make defconfig will most likely work for the PC (either running natively or hosted
on qemu) and make versatile defconfig will work for ARM-Linux running under qemu. After
compiling your kernel, you can compile the modules by issuing

make LINUX=/path/to/your-kernel-2.6.37

As an alternative, you can export LINUX=/path/to/your-kernel-2.6.37 and run make without
special parameters. For cross-compiling, the usual rules apply: set CROSS_COMPILE and ARCH in
your environment.

All modules but the two hello ones are called smallsomething . The reasons is to tell them from
real modules in your system. You can run something like “grep small /proc/modules” to find
if you forgot some of these things in the system.

3 The Makefile

The Makefile in this package is the standard one for out-of-tree kernel modules. It uses the obj-m
variable to name which objects to build and builds them from the top-level kernel directory.

The only difference from standard makefiles is that it enters the userspace subdirectory for both
the all and clean targets.

4 User-space

The package includes a few user-space tools, in the userspace subdirectory. They are small tools
that may be useful in testing the modules.

The current list is made of the following programs:

mapper
wmapper

The former program uses mmap to access a file and prints its content to stdout. The
latter tool writes to a file after reading from stdin. Both receive as arguments the
file name, the offset and the size of the data transfer.

selread

The program reads a device (filename passed on the command line) based on select.
The read system call is only called after select reports that the file descriptor is
readable.

5 Testing

This package includes some minimal testing facilities, in the test/ subdirectory. Note however
that there is no documentation outside of the scripts themselves, as it is mainly stuff I wrote for
my own use.

Chapter 7: Char Drivers 3

6 Hello Modules

The most simple module is the classic hello module.

6.1 hello.ko

When loaded, hello.ko prints the usual message. When unloaded it prints another message.
The module does nothing else, but it shows the basic features of a module:
• Inclusion of <linux/> headers.
• Use of __init and __exit for functions.
• Use of static definition for all file-local functions.
• Use of module init and module exit.
• Use of MODULE_LICENSE.

Note that you may write an even simpler module: one that returns an error from the init
function: this technique is useful to run some code in kernel context without the need to unload
the module when you need to repeat the action. This technique is especially useful when module
parameter are used; for example, I use one such module to access msr registers on the PC, or
monitor a GPIO pin in a busy-loop for one second.

6.2 helloparm.ko

The modules is like hello above, but introduces use of module parameters. It takes two param-
eters: an integer number and a string. The number is used to repeat the hello message several
times, and the string is used as goodbye exit. Example use:

insmod helloparm.ko repeat=5 goodbye="I am done"

Note that the type of the parameters are int and charp. It may looks strange that a C language
keyword and another generic word can be used in the same context; the word in the module parm
macro is actually used by the preprocessor to build a longer word as name for a structure. Thus,
neither int nor charp appear as words in the compiler input.

7 Char Drivers

Most simple device drivers are char devices. While in many situations a char driver is not the
best or cleanest solution, they are pretty easy to implement. The package has three modules,
with a similar user interface and slightly different features.

7.1 smallchar.ko

The modules registers a major number using the old kernel function. It uses major 126 because
it is “reserved for local or experimental use” (see Documentation/devices.txt). This means
that no real device uses such major number. The device owns all minor numbers within the
major number, and can thus use them at will.
This driver doesn’t use the minor number, and just offers a writable buffer of 64 bytes. The
buffer is filled by write and can be read back through read. It is never shortened, so if you write
less data than you originally wrote, the trailing part of the previous content appears back.
The driver introduces the following concepts:
• register chrdev (now deprecated, see the next section).
• The file operation structure.
• The THIS_MODULE macro, used to keep reference counts.

Chapter 7: Char Drivers 4

• The write and read method.
• The __user marker.
• copy_to_user and copy_from_user.
• Using the file offset and updating it.
• Returning errors to user space.

To use the driver, you must manually create the device special file, which customarily lives in
/dev:

mknod /dev/sc c 126 0

Note that any minor will work, as this driver is not using the minor. Similarly, any name can
be used because the only thing that identifies the driver in the kernel is the major number.
number.

7.2 smallchar-udev.ko

The next example is a more “modern” version of smallchar. It registers a class in sysfs and then
creates one device, with minor number 0 (but any number will work). If you are running udev
or another hotplug system, the device will automatically appear in your /dev directory. The
name chosen is /dev/chardev; thus, all strings used in the source to name things are different,
and you can check which of the strings is used in the various contexts.
This is how normal char drivers nowadays register their own entry points, in order for them to
automatically appear in the filesystem.
The driver introduces the following concepts:
• Creation of a class of devices.
• Creation of a device within the class.
• Use of IS_ERR and PTR_ERR from <linux/err.h>.
• Use of goto for error management.

Note that there is another interface for automatic device creation, which may be more useful if
you driver just needs to create an array of similarly-named devices (like /dev/hw0, /dev/hw1
and so on). The function alloc chrdev region allocates and registers a range of minor numbers
and returns the associate major number (dynamically allocated), while register chrdev region
registers a range of minor numbers from a major number you already own. In both cases the
hotplug mechanism is notified.

7.3 smallmisc.ko

The last char driver example is smallmisc. This is a char device like the other two (a 64-byte
buffer, same semantics), but it is registered as a misc device. This means the major number is
always 10 (reserved for misc devices) and you get a single minor.
The minor being used here is MISC_DYNAMIC_MINOR, so you don’t even need to choose your
own unique minor number. The device will automatically appear in /dev thanks to the hotplug
system, but if you need to mknod by hand, you can find the minor in /proc/misc, using grep
or similar tools.
The trick put in action here is simple: when the special file is being opened, the open method
of the misc major number gets called; it then scans the list of registered minors and replaces its
own file operations with the ones of the client module.
Thus, smallmisc is simpler than smallchar-udev while being hotplug-aware just the same. Note
that unless you are creating only one (or a pair of) special files, this is not the preferred way to
work, and you should rather register your class and devices by yourself.

Chapter 8: Sleeping 5

The source code uses sc_ as prefix for all functions and variable, instead of sm_ as you may
expect, in order to ease users of diff who want to check what is different here and smallchar.c.

8 Sleeping

Simple drivers like smallchar can be used for trivial tasks like lighting a led or reading some
input channels, but for any real work more is needed. A process reading from a device may need
to sleep while waiting for data; similarly, a process writing may need to sleep while waiting for
buffer space to become available.

The next examples show the minimal sleeping mechanism and a more complete setup.

8.1 smallsleep.ko

The smallsleep module declares a wait queue in order to put a process to sleep. It registers as
a misc driver with dynamic minor, so you won’t need to mknod manually.

When a process reading from the associated device, it is put to sleep until some other process
writes to the device. The reading process will then get EOF, so it can be tested by simply running
cat. When you write to the device, the sleeping cat sees end-of-file and terminates.

The driver introduces the following concepts:

• Wait queues and awakening.

• wait event interruptible (which re-evaluates the second argument).

8.2 smallsleep2.ko

Whereas smallsleep has the basics of sleeping, real code should support the poll and select
system calls whenever read or write may sleep. In this case, after the file is reported as readable,
the read method cannot sleep; thus, the implementation of read must be different, to handle
consistency with poll.

The behaviour of read is different from smallsleep: here one byte is returned (the letter x)
each time read returns. This allows testing with programs like userspace/selread, that print
to stdout what is read from the device file.

The module is more difficult than the previous one because of the need to keep private data
within the file; to allocate and initialise such private data we also need an open and release
method. The system ensures that release is called only once for every file, even if the close
system call may be called more than one on the same file (this happens if the user used fork or
dup on this file).

Finally, when a system call may put the process to sleep, it should support non-blocking oper-
ations, by returning EAGAIN when the call would block.

The driver, therefore, introduces the following concepts:

• Use of private_data in a file.

• Kmalloc and kfree.

• The open and release methods.

• Use of O_NONBLOCK to support EAGAIN.

• Use of the poll method.

Chapter 9: Timers and Works 6

9 Timers and Works

The kernel offers primitives to execute operations in the future. The most common tool here is
the timer; while in some cases it is being replaced by other mechanism, it remains a very simple
and effective tool.
Being run in interrupt context, the timer is sometimes not suitable to perform the needed task.
To this aim work queues have been introduced; they run in the context of a process and code
in the work queue can thus sleep.

9.1 smalltimer.ko

The module registers a timer that re-registers itself. The timer has a period of 1s by default,
and runs forever. The timer function just prints the current time (in jiffies) and the time
where it was registered to run, for comparison.
The module accepts two parameters: periodms (default is 1000) and count (default is 0 ==
4G). Thus, you can run the timer every 1 ms (or even 0ms), by limiting the number of iterations
you can avoid locking up the system in interrupt overload.
The timer receives an unsigned long argument, but in all Linux architectures this type has the
same size of pointers: whenever you need a pointer argument instead of integer, thus, using a
cast is idiomatic and now considered bad.
The argument value is declared in setup_timer but there is no official way to change it. For this
reason the module uses an external integer variable to store the expire time, using the argument
as a pointer to that value. You may object the the expires field could have been used, but
there are to reasons to avoid that. First, direct access to structure fields is to be avoided, to
hide the internals of data; then, recent kernels add some slack to the timer expiration time (up
to 0.4% by default), and reading back the value will make all those slacks to integrate over time.
To summarise, the driver introduces the following concepts:
• Use of setup_timer.
• Use of a pointer as timer argument, despite the mandatory cast.
• Using mod_timer instead of add_timer to avoid direct access to internal fields of the struc-

ture.
• Use of msecs_to_jiffies for time conversions.

9.2 smallwork.ko

Timers run in atomic context, because they are fired off the timer interrupt. A work queue,
on the other hand, runs in the context of a process. There a dedicated worker process for each
CPU in the system.
This module registers a work and a delayed work: the work is run “immediately”, while the
delayed work is run some time in the future, according to a delay specified in jiffies.
The scheduled function is the same for both works, and it prints the time elapsed since the time
it was registered. The delayed work is scheduled for 100ms in the future. This is the expected
result:

[305746.022264] sw_init: process insmod (8384)
[305746.022284] sw_run: process kworker/0:2 (769) -- delay 11
[305746.122203] sw_run: process kworker/0:2 (769) -- delay 99926

The driver introduces the following concepts:
• Use of an immediate work.
• Use of a delayed work.
• Accessing the name and pid of the current process.

Chapter 10: Interrupts 7

10 Interrupts

The three modules in this chapter deal with interrupts. The modules piggy-back on another
interrupt source, for example your network card or disk drive. The handler is registered as a
shared one, so that when interrupt events arrive both the original handler and the one of the
simple module are called.
Please note that if the original handler doesn’t allow sharing, these modules will the EBUSY –
for example when hooking on the timer interrupt, irq 0 on the PC.
All the modules require an irq integer argument when being loaded. If no argument is passed,
a message is printed to syslog and you’ll need to unload and reload the module.

10.1 smallirq.ko

This module is the minimal interrupt handler. It simply counts the events it receives. It prints
the number of events it processed at most once per second.
For example, when loaded under qemu piggy-backing on the network card (argument: irq=11),
I get this under flood ping:

[57978.000137] si_handler: irq 11: got 14982 events
[57979.001474] si_handler: irq 11: got 16098 events
[57980.000316] si_handler: irq 11: got 15930 events

The driver introduces the following concepts:
• Registering and releasing an interrupt.
• Using a devid pointer as irq data structure;
• Using jiffies to print on a timely basis.

10.2 smallirq-tlet.ko

The module uses a tasklet to perform most of the work related to interrupt handling. While the
previous module just counted the interrupts, this one counts both the interrupts and the tasklet
invocations, reporting the delay between the interrupt and the tasklet.
The time delay is measured by saving the time stamp of the interrupt in the data structure, and
then taking another stamping in the tasklet.
The driver needs some locking, because there are two critical sections. First, the struct
timespec is not updated atomically, so saving the stamp in the data structure must be pro-
tected; then, irq_count is subject to read-modify-write operations in both the interrupt handler
(it increments the count) and the tasklet (it reads and zeroes the counter).
A spinlock over the data structure is used to deal with both problems. Note that the two
contexts (interrupt handler and tasklet) use
This is, for example, the output I get on a physical computer:

[4905606.305803] si_tlet_fun: process emacs (3713)
[4905606.310377] si_tlet_fun: irq 18: got 39 irq, 39 tlet
[4905606.315607] si_tlet_fun: delay ns: min 1876, avg 427531, max 16338531

It’s apparent that the tasklet runs in the context of another process (here is emacs, but it may
be any process or the idle task). Also, sometimes (under heavy load) the number of tasklets
being run is less than the number of interrupts.
The driver introduces the following concepts:
• Registering a tasklet.
• Using getnstimeofday.
• Trivial use of spinlocks.

Chapter 10: Interrupts 8

10.3 smallirq-work.ko

This last module performs the same functionality of smallirq-tlet but uses a work structure.
The difference is that while a tasklet runs in atomic context (so called, soft-interrupt), the work
runs in the context of a process. Besides replacing the tasklet with the work queue, there a few
more details being addressed here.
First, note that interrupts are enabled, both when tasklets and works are running. Therefore,
the previous module, has a minor race condition still pending here:

getnstimeofday(&ts);
spin_lock_irq(&d->lock);
nanodiff = (ts.tv_sec - d->irq_time.tv_sec) * NSEC_PER_SEC +

ts.tv_nsec - d->irq_time.tv_nsec;
spin_unlock_irq(&d->lock);

The problem in the code above is that and interrupt can still happen after getnstimeofday and
before the spin lock is taken. Thus, the nanodiff above may be negative. This module fixes
the issue by running getnstimeofday after taking the lock.
Another issue is that the default schedule_work function activates the work in a reentrant
context, and you can face errors like this:

[2219.173118] si_work: process events/0 (7)
[2219.173258] si_work: process events/1 (8)
[2219.173262] si_work: irq 18: got 1 irq, 2 works
[2219.173265] si_work: delay ns: min 0, avg 16664, max 23955
[2219.191896] si_work: irq 18: got 1 irq, 0 works
[2219.196713] divide error: 0000 [#1] PREEMPT SMP

What happened here is that during an interrupt burst two processors started executing the
work: the first zeroed the d->work_count field and the other then calculated the average over
0 items.
This may be worked around by locking the whole work function, but a better solution is schedul-
ing the work on the non-reentrant work queue:

queue_work(system_nrt_wq, &d->work);

Unfortunately, the non-reentrant queue only exists since 2.6.36, so a different approach is needed
for 2.6.35 and earlier. Rather than spinlocking the whole work (which can be pretty long because
of the printk, especially if you have a serial console like I do), the suggested code locks only the
data collection and the decision about whether or not to print. Another option may be using
semaphores, but I’d better not prevent execurion of other works just because ours is busy with
printk.
This is the result on a dual-core system:

[20086.000289] si_work: process events/0 (7)
[20086.004489] si_work: irq 18: got 6964 irq, 6949 works
[20086.009746] si_work: delay ns: min 1158, avg 9655, max 109950
[20087.000311] si_work: process events/1 (8)
[20087.004514] si_work: irq 18: got 6734 irq, 6717 works
[20087.009659] si_work: delay ns: min 1237, avg 9694, max 54061

As you see, the work runs on either CPU and our locking is properly working in a non-intrusive
way – the verification using the numbers shown above is left as an exercise to the reader. Also,
I’m well aware that de delays being reported are not meaningful in all cases. Whenever you see
more interrupts than executions of the work queue, that the delay is underestimated: another
interrupt occurred after the work was scheduled, and this is the delay that was measured.
As a final remark, please note that it’s very unlikely for an interrupt handler to request execution
of a work in process context in a concurrent way.

Chapter 11: Printing 9

11 Printing

The next two modules are related with diagnostic messages. The former is used to turn the
application logs into the printk stream, and the latter shows how to declare your own console
channel.

11.1 devprintk.ko

The devprintk module, though simple, is a real tool that I have been using in a few embed-
ded projects. It is a misc device that sends to printk all the data that anybody writes to
/dev/printk.

If your system is running unattended, like most control systems do, you can redirect stdout
and/or stderr of the application to /dev/printk, to have a single messaging channel (the printk
infrastructure) for your whole system.

The module adds the process name and pid to all messages it prints, so you can identify the
individual messages in the overall stream; applications are expected to call write with one
complete text line each time, otherwise the message stream won’t be very friendly.

To create the string being passed to printk, the drivers uses a global buffer. In a multi-
processor system this creates a race condition; the chosen solution here is using a mutex, a
binary semaphore that puts the current process to sleep until the resource si free. Note that a
mutex can only be used for code in process context, but this is the perfect situation for it.

In userspace you find udplogs.c. The program opens /proc/kmsg and sends to UPD broadcast
every message it picks up from there. The trivial tool allows to send out the diagnostic stream to
any observer that may plug a device on the network. While not suitable for internet-connected
sites, control systems may well send out their diagnostic messages in the local network of the
control site. By the way, this is exactly what high-level car and truck engines do: they are
connected to a CAN bus where all status information of the engine is sent as broadcast; the
pitcock, then, is just a sniffer that turns such information into leds and arrows and speed meters.

The devprintk module and udplogs show the following concepts:

• Registering a write-only device.
• Using a mutex for your critical section.
• Use of /proc/kmsg.
• Use of UDP broadcast.

11.2 smallconsole.ko

The module registers a console data structure, that will receive all printk traffic together with
all the other consoles in the system. This is how you all diagnostic channels in Linux work,
whether they are the VGA screen, the serial port, or the line printer.

The console is registered with small as its name and CON_ENABLED as flags – otherwise the
console would only be enabled if a console=small0 would be passed on the kernel command
line.

The output it receives is fed back to printk, by only reporting how may bytes the new console
received. To avoid recursion any message that includes the string smallcons is discarded.

This is what happens when you load the module:

[135434.016434] console [small-1] enabled
[135434.017415] smallcons: got 42 bytes
[135434.018419] new console loaded
[135434.019415] smallcons: got 35 bytes

Chapter 11: Printing 10

The first message is generated by the kernel and sent to the new console as well, which counts
it as 42 bytes of information. The next message is printed by smallcons itself, in its own init
method, and again it gets fed to the new console, which reports it as being 35 bytes long.

i

Table of Contents

Introduction . 1

1 Git Branches . 1

2 Compiling . 2

3 The Makefile . 2

4 User-space . 2

5 Testing . 2

6 Hello Modules . 3
6.1 hello.ko . 3
6.2 helloparm.ko . 3

7 Char Drivers . 3
7.1 smallchar.ko . 3
7.2 smallchar-udev.ko . 4
7.3 smallmisc.ko . 4

8 Sleeping . 5
8.1 smallsleep.ko . 5
8.2 smallsleep2.ko . 5

9 Timers and Works . 6
9.1 smalltimer.ko . 6
9.2 smallwork.ko . 6

10 Interrupts . 7
10.1 smallirq.ko . 7
10.2 smallirq-tlet.ko . 7
10.3 smallirq-work.ko . 8

11 Printing . 9
11.1 devprintk.ko . 9
11.2 smallconsole.ko . 9

	Introduction
	Git Branches
	Compiling
	The Makefile
	User-space
	Testing
	Hello Modules
	hello.ko
	helloparm.ko

	Char Drivers
	smallchar.ko
	smallchar-udev.ko
	smallmisc.ko

	Sleeping
	smallsleep.ko
	smallsleep2.ko

	Timers and Works
	smalltimer.ko
	smallwork.ko

	Interrupts
	smallirq.ko
	smallirq-tlet.ko
	smallirq-work.ko

	Printing
	devprintk.ko
	smallconsole.ko

